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In this paper we have made an attempt to review the present status of the theory of cyclotron masers
with relativistic electron beams. After discussing the basic features of electron-cyclotron radiation under
conditions of normal and anomalous Doppler frequency shifts, we consider particle deceleration by a
constant amplitude electromagnetic wave in a constant magnetic field using the formalism developed
earlier for cyclotron autoresonance acceleration of electrons. An optimal cyclotron resonance mismatch
was found that corresponds to the possibility of complete deceleration of relativistic electrons. Then, in-
teraction of relativistic electrons with resonator fields is considered and the efficiency increase due to
electron prebunching is demonstrated in a simple model. Since an efficient interaction of relativistic
electrons with the large amplitude electromagnetic field of a resonator occurs at a short distance, where
electrons make a small number of electron orbits, the issue of the simultaneous interaction of electrons
with the field at several cyclotron harmonics is discussed. Finally, we consider deceleration of a pre-
bunched electron beam by a traveling electromagnetic wave in a tapered magnetic field. This simple
modeling is illustrated with a number of simulations of relativistic gyroklystrons and gyrotwistrons
(gyrodevices in which the bunching cavity of the gyroklystron is combined with the output waveguide of
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the gyro-traveling-wave-tube).

PACS number(s): 52.75.Ms, 41.60.Cr
I. INTRODUCTION

The history of cyclotron masers began in the late 1950s
when the first papers by Twiss [1], Schneider [2], Pantell
[3], and Gaponov [4] were published, practically simul-
taneously and, obviously, independently (see also [5]). In
these papers it was shown that electron beams moving in
a homogeneous external magnetic field are capable of
producing coherent bremsstrahlung radiation due to the
relativistic dependence of the electron-cyclotron frequen-
cy on the electron energy.

The surprising peculiarity of these studies was the fact
that the relativistic dependence played a crucial role even
in the case of weakly relativistic electron beams. In such
a case the interaction space must be long enough for the
electrons to develop orbital bunching from the weak ini-
tial modulation in electron-cyclotron frequencies.

Gaponov considered the situation in a more general
manner by also taking into account the effect of electron
bunching caused by the axial inhomogeneity of the ampli-
tude of the electromagnetic (em) wave. (This bunching,
related to the Weibel instability [6], can also be con-
sidered as the result of changes in electron axial momen-
tum under the action of the transverse component of the
magnetic field of the wave.) Gaponov studied the simul-
taneous effect of the orbital bunching caused by the rela-
tivistic dependence of the electron-cyclotron frequency
on electron energy and the axial bunching caused by
changes in electron axial momentum. He found that
when the em wave propagates along an external magnetic
field at the speed of light, these two bunching effects com-
pletely compensate each other [7] (see also [8,9]). A simi-
lar analysis of the motion of a single electron in a con-
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stant external magnetic field and a circularly polarized
constant amplitude em wave propagating along the mag-
netic field led Kolomenskii and Lebedev [10] and
Davydovsky [11] to the concept of autoresonance, in
which an electron, initially in exact cyclotron resonance
with the em wave, maintains this resonance even as its
energy changes by arbitrarily large amounts.

The first half of the 1960s was a time of active study of
cyclotron masers in different countries (see review papers
[5,12]). Especially successful were the studies done at the
Radiophysical Research Institute (Gorky, Soviet Union)
where Gaponov and co-workers invented in 1966 a prac-
tical configuration of a cyclotron maser, the gyrotron
[13,14]. During the second half of the 1960s and the first
half of the 1970s gyrotrons became the most powerful
sources of coherent millimeter- and submillimeter-wave
radiation. These devices were capable of operating in the
cw regime, and were successfully used in plasma experi-
ments for electron-cyclotron plasma heating in tokamaks
[15] (see also [12,16]). These successes led to the recogni-
tion of gyrotrons throughout the world and initiated
gyrotron development in many countries, starting in the
second half of the 1970s.

At present the theory of cyclotron resonance masers
with weakly relativistic electron beams (including con-
ventional gyrotrons) is well developed. In its general
form this theory is based on the assumption that elec-
trons gyrating in an external magnetic field interact with
the em field under conditions of cyclotron resonance,

o—k,v,=sQ, , (1)
and make a large number of electron orbits in the interac-

tion space, i.e.,
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(4

N= >>1 . (2)

s
In Egs. (1) and (2) @ and k, are the frequency and axial
wave number of the em wave, respectively, {1, and v, are
the relativistic electron-cyclotron frequency and electron
axial velocity, respectively, s is the resonant harmonic
number, and T=L /v, is the time of transit through the
interaction region of length L. The term “weakly relativ-
istic electron beams” used above implies that the electron
kinetic energy is much smaller than the rest energy.

According to the conditions given by Egs. (1) and (2),
one can average the equations for the electron motion
over the fast gyrations. This results in a set of normal-
ized equations which includes only the harmonic of the
electromagnetic field rotating synchronously with the
gyrating electrons. These slow time scale equations can
be studied once and the results applied to an arbitrary
mode and set of beam parameters (see, e.g., [14,16,17]
and references therein).

The theory of cyclotron masers with relativistic elec-
tron beams is more complicated because of the strong rel-
ativistic dependence of the electron-cyclotron frequency
on the electron energy. To explain this statement let us
consider for simplicity gyrotrons operating in a uniform
magnetic field B,Z at frequencies near the cutoff frequen-
cy of the resonant structure [in this case the axial wave
number k, in Eq. (1) is much smaller than w/c].

When electrons change their energy & in the process of
interaction with the em field one can present the devia-
tion in electron-cyclotron frequency Q, =eB,/mycy
caused by the change in normalized energy, y =& /mc?,
as

A% sy 3)
Qo Yo

Here, yo=1+eV, /myc? is the initial value of y and V,
is the beam voltage. Correspondingly, introducing the
transit angle of electrons as the value proportional to the
cyclotron resonance mismatch, ® =(w—sQ,)T ( we omit-
ted here the Doppler term, which is small in gyrotrons),
one can find that the change in electron energy Ay causes
a shift in the transit angle

A®=s—A—7—
Yo

QT . @
To change the electron energy without disturbing the cy-
clotron resonance, we must have |A®|<27 [14,18],
which implies that

Ay o 1
SN (5)

For efficient operation, in which all of the electron kinetic
energy is withdrawn by the em field, the change in y is
Ay ~eV, /myc?, and the number of electron orbits must
satisfy the condition

(6)

There are a number of implications of Eq. (6). One of the
most immediate is that relativistic gyrotrons with
lyo—1|Z 1, for which the right hand side is of order 1,
cannot operate efficiently in the same regime as their non-
relativistic counterparts (close to cutoff with a large num-
ber of cyclotron orbits). One can, of course, operate with
a short cavity (where the number of cyclotron orbits is
small) and a constant magnetic field. One disadvantage
of this approach is that to decelerate relativistic electrons
in a short distance a large electric field is required, which
may lead to microwave breakdown. A second problem
arises because when N ~1 the device loses its resonant
properties since the width of the cyclotron resonance
band is on the order of the cyclotron frequency. There-
fore the simultaneous excitation of several modes in such
a wide band may occur. (Note that in relativistic gyrot-
rons TM modes can be competitive [17] with TE modes
widely used in conventional gyrodevices.) In addition,
the overlapping of cyclotron resonances at different har-
monics becomes possible. So, while mode competition
can be avoided to some extent by operating at low order
modes, the harmonics overlapping at N ~1 looks una-
voidable. Besides a complication of the theory describing
the interaction, this can lead to degradation of the elec-
tron efficiency as will be shown below. This approach
does have an advantage, however: it is relatively insensi-
tive to the spread in electron energies and velocities.

The requirement that the electrons execute a small
number of orbits can be relaxed if we allow Doppler up-
shifted operation and a nonuniform magnetic field.
When these effects are included, the expression for the
transit angle is ®@=(w—sQ,—k,v,)T and Eq. (4) for the
change in transit angles becomes
Ay k,v,o Av, _ AB, -

A®=2xwsN
Yo SQL‘O V20 BO

Thus there are two strategies for ensuring that
A® =27 while retaining a large number of cyclotron or-
bits. The first strategy is to choose the axial wave num-
ber k, large enough so that changes in axial velocity par-
tially compensate for changes in energy; i.e., the second
term on the right hand side of Eq. (7) partially cancels the
first. As was mentioned above, when k, =w/c this can-
cellation is complete and there is an exact autoresonance
between electrons and the em wave. That is why cyclo-
tron masers based on the effect of partial compensation of
the first two terms in Eq. (7) are called cyclotron autores-
onance masers, or CARMs. (CARMs were suggested by
Petelin in 1974 [19]. The first review of theoretical stud-
ies of CARMs was done in 1981 [20]. The most recent
reviews are given in Refs. [21,22].) Note that the em field
excited in a short resonator can also be represented as a
superposition of waves with rather large k,. This issue
will be discussed below.

The second strategy is to profile the external magnetic
field so it matches the axial dependence of the energy of
decelerating electrons [last term in Eq. (7)]. In such a
case the cyclotron frequency of at least one synchronous
electron remains constant so that cyclotron resonance be-
tween the em wave and this particle is maintained. For
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other electrons there is a spread in cyclotron frequencies
caused by different axial dependencies of electron ener-
gies that degrades the total efficiency of the electron
beam deceleration. This method has been studied in rela-
tivistic gyrotrons and cyclotron masers with traveling
waves, respectively, in [23] and [24] (see also [25]).

The above strategies may lead to high efficiency when
idealized electron beams (with no velocity spread) are
considered. However, the efficiency of these two kinds of
operation can be sensitive to electron velocity spread.
Therefore, to achieve high efficiency with relativistic elec-
tron beams it may be necessary to combine all three
methods; i.e., provide a short interaction region, taper
the external magnetic field, B,(z), and have the em waves
propagate along the magnetic field with a finite axial
wave number [26]. Of course, the corresponding optimi-
zation of parameters is a very complicated numerical
problem, especially for gyroamplifiers: the search for op-
timal parameters takes place in the function space of axi-
al magnetic field distributions and cavity shapes as well as
the multidimensional parameter space of pitch ratio, in-
put power, beam placement, and drift section length [27].
The equations that have to be studied in this case consist
of the nonaverage equations of electron motion and the
equations describing the spatial structure and the ampli-
tude of the em field in the microwave circuit [28,29]. To
facilitate such a search and to elucidate the results, it is
expedient to consider the problem, first, in a simplified
analytical manner, and then to approach the real situa-
tion by adding to the analysis successively the factors im-
portant for operation of realistic gyrodevices.

This paper takes just such an approach. First, in Sec.
II we consider deceleration of one relativistic electron
gyrating in a constant external magnetic field and in-
teracting with a circularly polarized plane em wave. We
then analyze the effect of an electron distribution in ini-
tial gyrophases on the efficiency of interaction. In Sec.
III we study the same effect in the resonators where elec-
trons excite standing waves. In Sec. IV we discuss the
effect of overlapping of cyclotron resonances which may
occur in strong fields excited in short cavities. Section V
is devoted to the opposite case, i.e., the gradual decelera-
tion of electrons in a tapered magnetic field in the process
of interaction with the traveling wave. Finally, in Sec. VI
we summarize our results.

II. INTERACTION OF GYRATING ELECTRONS
WITH ELECTROMAGNETIC WAVES

Let us start by considering electrons moving in a con-
stant external magnetic field B, and interacting with an
electromagnetic wave. The electron motion can be de-
scribed by the equations for the electron momentum,

dp _ _ 1

It e{E+ - [vX(By+B)] (8)
and energy

dy ___e

ar moc? (VE) . 9)
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Here y is the electron energy normalized to the rest ener-
gy mgoc?. In principle Eq. (9) is redundant since it can be
derived from Eq. (8), but it is sometimes convenient to
have an equation that tells us directly how the energy
evolves.

For simplicity, let us consider a circularly polarized,
constant amplitude, plane homogeneous transverse elec-
tromagnetic (TEM) wave propagating along B, with the
phase velocity v, that corresponds to its propagation in
a medium with the refractive index n=c /v,,. The vec-
tor potential of such a wave, A= A4,x,+ 4,y,, can be
presented in a complex form

A tid, =" (10)
where the axial wave number k, is related to v, as
k,=®/v,, and A is the complex wave amplitude. Corre-
spondingly, transverse components of the electron
momentum can be presented in a complex form as
Pxtip,=p ,e'® where 0 is the electron gyrophase. Then,
one can express the electric and magnetic fields of the
wave via the vector potential A by

1 0A
E=——°2,
c Ot

and rewrite Eqgs. (8) and (9) as (cf. [19,20])
dp,  y—np,

B=rot A

—_—=— Im( Ae'?) , (11a)
d§ p;

—k,v,—Q —n .
i@:L @ z%z c Y D, Re( Ae'®) , (11b)
dé p, ® 1221
dp, )2 .
—Z=—p=—Im(4e'®), (11c)
d§ D:
ay Pl deie) (11d)
d§ P:

Here, time is presented as t =ty +7 where ¢, is the en-
trance time, 7 is related to z as dz/dr=uv,,
@=wt —k,z—0 is the phase of the wave with respect to
the electron gyrophase, the electron velocity components
are normalized to the speed of light, ¢, the electron
momentum components to m ¢, the wave amplitude 4 to
mocz/e, and £ to the axial coordinate, §{=wz /c. Com-
bining Eqs. (11c) and (11d) gives us the autoresonance in-
tegral derived in Refs. [10] and [11]:

RY =P, =RnYo Py - (12)

As follows from Eq. (12), decelerating electrons lose
their axial momentum when they interact with the for-
ward wave (v,, >0, and hence n >0) and gain it when
they interact with the oppositely propagating wave
(vpy <0, n <0). In the latter case the electron energy is
withdrawn only from the orbital gyration of particles.

Combining Eq. (12) with the general relation between
electron energy and momentum

y>=1+pi+p? (13)

one can determine the squared orbital momentum of elec-
trons:



y)+(1—ny,—y)?.
(14)

Pf ZPfo —2(1=nBo)volvo—

From Egs. (12) and (14) one can find for arbitrary
values of the initial electron energy, y,, and pitch ratio,
ay=P,0/B,o the optimal phase velocity of the wave [30]
normalized to c:

Yot1 (15)

ph,opt =

When B, =By opt the electrons can be completely de-
celerated by the wave. When B, > By, o €lectrons lose
all their orbital momentum when the axial momentum is
still finite. In the opposite regime, By <Bph opt> the elec-
trons lose all their axial momentum before the orbital
momentum goes to zero, resulting in reflection of the par-
ticles.

Since a spread in electron axial velocities is inherent in
electron beams, to avoid the appearance of reflected par-
ticles one should operate with B> By op- In such a
case, when electrons lose all their orbital momentum the
efficiency of kinetic energy extraction from one particle
[single-particle efficiency, ngp=(yo—v)/(yo—1)], as fol-
lows from Eq. (14), is equal to

S SR Sl PO PR G S
Tsp 1 ) 10 1 —nBzo)2 .

1=y 1—n
(16)
When the last term in this expression is small,
(1 ——nﬁ 0)2
2 (17)
BLO | 1—n ZI
Eq. (16) is reduced to the known result [20]
Blo
= . (18)
T 21—y N1 =nByo)

For ‘‘gyrotron” operation at frequencies near cutoff
(n <<1) Eq. (17) means weakly relativistic orbital veloci-
ties of electrons: 2, <<1.

It follows from Eq. (15) that the interaction of elec-
trons with fast waves (B,,>1) is optlmal only at large
enough pitch factors, i.e., when aOZZ/(yo—l) For in-
termediate values of ag [1/7,<a3<2/(y,—1)] the op-
timal phase velocity corresponds to the interaction of
electrons with slow waves (B, <1) under the condition
of the normal Doppler effect, B, <B,;. Finally, for small
ay (@3 <1/y,) it is necessary to slow down the phase ve-
locity of the wave even more and, therefore, the optimal
phase velocity corresponds to the slow-wave interaction
when the anomalous Doppler effect, B,o>B,,, takes
place. Note that when electrons interact with the for-
ward wave under the condition of the normal Doppler
effect, they simultaneously lose both orbital and axial
components of their momentum. However, under the
condition of anomalous Doppler effect the electrons start
their deceleration by losing axial and gaining orbital
momentum [31]. In such a case one can use initially
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linear electron beams (with 3,,=0) for coherent cyclo-
tron radiation [19,32]. (Such beams can be formed more
easily and of higher quality than beams moving along hel-
ical trajectories.) The physics of such a slow-wave cyclo-
tron maser operating under the condition of the anoma-
lous Doppler effect was considered in Refs. [33-35].
Note that in the process of deceleration under the condi-
tion of anomalous Doppler effect the electrons lose their
axial momentum, so their axial velocity moves to the bor-
der between anomalous and normal Doppler effects,
B, =Bpy- An electron reaches this border when its energy
change is equal to [33]

BzoBen —
Yo~V Bai—1 Yo - (19)
In the process of further deceleration the electrons lose
both components of their momentum and, according to
Egs. (12)—(14), can be completely decelerated.

Note that Egs. (11a)-(11d) contain one more integral.
To derive it let us multiply Eq. (11a) by (d¢/d§) and Eq.
(11b) by dp, /d& and equate the right-hand sides of the
resulting expressions. Then, using Eqgs. (12) and (14), we
can derive the equation

14dpi
2 dE

Q070 day _

o  df (20)

dé‘ (Ple

For the case of the constant wave amplitude and external
magnetic field this gives us the following integral (cf.
[36)):
2
My—&+Re( Ap e'®?)=const . 1)
@ 2
This equation shows us how the phase ¢ varies with
changes in electron energy and orbital momentum.

Both the autoresonance integral, Eq. (12), and the
above conservation law, Eq. (21), have a quantum
mechanical interpretation. This can be understood by
observing that particles change energy and momentum
by absorbing or emitting photons. In each elementary
act of photon radiation or absorption for an electron en-
ergy change of #iw, the axial momentum changes by #ik_;
thus the factor of n in Eq. (13) [19]. The corresponding
change in canonical angular momentum is %, which, after
some algebra, leads to Eq. (21). Note that the quantity
p2/2—Re( Ap e'®) is proportional to the canonical angu-
lar momentum around a guiding center of a gyrating
electron through first order in the vector potential A.

Using Egs. (12), (14), and (21), one can reduce the set of
Egs. (11a)—(11d) to one equation for the electron energy.
This was done by Roberts and Buchsbaum in Ref. [37].
In our notations this equation can be written in the form
2

/32 § =—V(y), (22)

where the function V(y) describing an effective potential
well is equal to
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and, as follows from Egs. (12) and (15), for optimal n,
B,y =n(y—1). Here ¥ is a fourth order polynomial of y
with coefficients depending on the initial electron energy,
Yo» Dpitch ratio, a, normalized wave amplitude,
a=(Q,/0)E /By) (where E is the amplitude of the elec-
tric field of the wave), initial cyclotron resonance
mismatch, 8=1—npf,,— Q. /o, wave phase velocity, B,
(refractive index n ), and entrance phase, @q:

F=Ci(y —7)*+ Cavol¥ —¥0)* + C37§(y — 7o)
+Cv3y—vo)+Csvd, (23)

with

C,=(1—n??,

C,=48(1—n?),

C,=4[8*+(1—n%a(Bycospy—a)],

C,=88ap ,cosp,—8aX(1—npB,,) ,

Cs=—4a’p},sin’p, .

Analyzing this function, F(y ), for the case of the optimal
refractive index defined by Eq. (15) as nopt=Bl;,}opt, one
can find the optimal cyclotron resonance mismatch,

7/0-1 2
=k, 09

Sopt: y—_o.B_LOa cos@yt+
Vo1

which depends only on three parameters: ¥, a, and
a cospy. Two terms on the right-hand side of Eq. (24)
show that the cyclotron resonance mismatch must be
chosen to account for both the wave amplitude (first
term) and the departure from autoresonance (second
term). Equation (24) follows from the equation F=0 for
v =1, which means complete deceleration of a particle.
For 8#8,, F(y=1) is positive, which means that elec-
trons cannot be decelerated completely. Of course, it is
impossible to provide simultaneously the optimal
mismatch for electrons differing in entrance phases.

As was pointed out in [36—38], Eq. (22) as well as Egs.
(11a)-(11d) admit a general solution in terms of Weiers-
trassian elliptic functions. However, this formulation is
not very useful. To obtain concrete results it is simpler to
just integrate Eq. (22) numerically. Such an integration
was done by the authors of [37] who considered, follow-
ing [10] and [11], the case of exact initial cyclotron reso-
nance, 8=0, since they were interested in cyclotron au-
toresonance acceleration of charged particles. We men-
tion also Ref. [39] where this formalism was used for
describing cyclotron masers operating under anomalous
Doppler conditions, and Ref. [40] where electron de-
celeration in the case of exact autoresonance (n =1) has
been studied.

However, for deceleration of relativistic electrons by
an electromagnetic wave, as follows from Egs. (15) and
(24), the case of nonzero cyclotron resonance mismatch
and departure from exact autoresonance is of interest.
Therefore we studied Eq. (22) for nonzero cyclotron reso-
nance mismatch and the phase velocity of the wave
different from the speed of light.

We started our study from analyses of the function

F(y) defined by Eq. (23). Our results are illustrated in
Fig. 1, where the potential well described by the function
F(v) is shown for optimal and nonoptimal values of the
refractive index n and the cyclotron resonance mismatch
5. Figure 1(a) corresponds to a small wave amplitude
(a=0.02) and Fig. 1(b) to a large one (¢ =0.2). These
figures are given for initial normalized energy y,=2 and
pitch angle a,=1.5. When both n and & are optimal,
F(y)=0 when y=1; that which means a possibility of
complete deceleration of particles.

From the curves F(y) shown in Fig. 1 one can easily
estimate the sensitivity of a single-particle efficiency to
small changes in the parameters. The single-particle
efficiency can be defined as 7mgp=(yo—v)/(yo—1)
where the final energy, v, is defined as a root of the
equation F(y ;)=0. In particular, one can find from such
figures that the interaction efficiency becomes sensitive to

(a)
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0.000

—0.005

Potential Well

—=0.010

-0.015

(b}
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o
T
i

FIG. 1. Potential well in the cases of small (a) and large (b)
wave amplitudes: solid lines correspond to ¢,=0 and optimal
values of the refractive index, n, and the cyclotron resonance
mismatch, 8; dashed lines correspond to n =0.9 instead of
Nopt =0.96 (other parameters are the same as for solid lines);
dash-dotted lines correspond to @,=1/4 (other parameters are
the same as for solid lines); dotted lines correspond to §=0.04
instead of 8,,,=0.048 (a) and 8=0.25 instead of §,,=0.3 (b)
(other parameters are the same as for solid lines).
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the spread in initial gyrophases when it is on the order of
/2 or larger. It is also interesting to note that the same
deviation of the refractive index from its optimal value
determined by Eq. (15) causes large changes in efficiency
when the wave amplitude is small but small changes
when it is large.

This consideration, however, does not take into ac-
count that electrons with different initial phases require
different times (and distances) for deep deceleration. To
account for this effect, we studied Eq. (22) again for elec-
tron beam parameters y,=2, a,=1.5, and the optimal
phase velocity (refractive index) given by Eq. (15) and the
optimal cyclotron resonance mismatch given by Eq. (24).
Then the axial dependence of the efficiency,

1 1 27
= - d , 2
s [‘)’o vao v(§) %] (25)
was computed for different distributions in initial phases
@o. First, we studied the case of a top-hat distribution of
electrons in the range Ag, around the “central” phase,
Py, i.€., the distribution function is constant for

PE [@o_ AP Po+ 3 AP ]

and equals zero otherwise. Such a distribution corre-
sponds to prebunching of electron beams for gyrodevices
discussed elsewhere [41].

We have also studied the problem for more conven-
tional methods of electron prebunching. As is known,
the standard way of prebunching electrons is by weakly
modulating the electron energies in the first (input) reso-
nator, with successive ballistic phase bunching in the
drift space. As a result, the electron distribution in
phases at the entrance to the output interaction region
has the form

@(0)=@,+q singy+06, , (26)

where g is the bunching parameter proportional to the
amplitude of the input signal and the drift length (see,
e.g., [42]), and 6,, is the electron transit angle through
the drift region. If velocity spread is negligibly small, all
electrons have the same 6, and this value can be elim-
inated from Eq. (26) by referring ¢, to 6,,. In a similar
manner the ballistic phase bunching after two cavities
and two drift regions can be described by the electron
gyrophase distribution [43]

@(0)=@,+q, singy+q, sin(¢+@,+rq, sing,) , (26a)
where g, and g, are bunching parameters proportional to
field amplitudes in the first and second cavities, respec-
tively, ¥ is the difference between phases of these two
fields, and the parameter r =L, ,/(Ly, ,+ Ly, ,) deter-
mines the position of the penultimate cavity located at a
distance L4, ; from the first cavity and at L, , from the
output interaction region.

The axial dependence of the efficiency, Eq. (25), was
studied for the same set of parameters, v, &, By, as ear-
lier, and for the cases of one-cavity prebunching [with
g=1.8 in Eq. (26) that is close to the optimal value of q ]
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and two-cavity prebunching [Eq. (26a) with g, =1.6,
q,=1.8, Yy=m/2, and r=0.95; this set of parameters
provides the maximum of the fundamental harmonic in
electron current density at the entrance to the output sec-
tion [43]].

Results are presented in Fig. 2. As shown in these
figures, in the case of one-cavity prebunching the peak
efficiency is approximately two times smaller than for an
ideally prebunched beam (with Agp,=0). The utilization
of a two-cavity prebunching scheme (with properly
profiled magnetic field in drift regions) significantly im-
proves the efficiency in comparison with the one-cavity
prebunched scheme.

The important conclusion from Fig. 2 is that the op-
timal length for deceleration of initially 500 keV electrons
by a large amplitude wave is on the order of wavelength.
This means that for rapid deceleration of relativistic elec-
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FIG. 2. Dependence of the efficiency on the normalized axial
coordinate £=wz /c for two values of the wave amplitude: (a)
a=0.1, (b) a=0.2. Parameters’ values are y,=2, ay=1.5,
n=ny, =0.96, 6=3,,,=0.1633 (a) and 0.3 (b). Solid lines cor-
respond to @, =0, Ap,=0; dashed lines to ¢,=0 and Agy=7/2,
dash-dotted lines to @,=0 and Ago=. Dotted lines corre-
spond to one-cavity prebunching with ¢ =1.8; dot-dot-dashed
lines correspond to two-cavity prebunching with ¢,=1.6,
q,=1.8, y=m/2,and r=0.95.
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trons an intense electromagnetic field is required. Indeed,
the value of normalized amplitude, a, taken as equal to
0.2 for By, =PBpnopr Y0=2, a@p=1.5 corresponds to an
electric field amplitude about 0.37 of that of the magne-
tostatic field (in gaussian units). Since such a high field
can be difficult to realize because of microwave break-
down, there are at least two other options.

The first is to trap an electron bunch by a moderate
amplitude wave and then decelerate this bunch gradually
in a structure with properly tapered parameters. This
kind of electron deceleration is realizable in cyclotron
masers with tapered waveguides and magnetic field distri-
butions.

The second option is to excite a strong electromagnetic
field in a short resonator. Since the structure of such a
field can be very different from the constant amplitude
traveling wave considered above, we will study the in-
teraction of gyrating electrons with resonator fields sepa-
rately.

III. INTERACTION OF GYRATING ELECTRONS
WITH STANDING WAVES IN RESONATORS

To simplify our analysis, let us suppose that the elec-
trons make a large enough number of electron orbits in
the resonator that we can use the equations for electron
motion averaged over fast cyclotron gyration. (In the
next section we will drop this assumption and consider
several harmonics simultaneously.) At the same time,
keeping in mind that the resonator length can be rather
short, we will take into account effects caused by the axi-
al inhomogeneity of the resonator field. Since cyclotron
masers operate at TE rather than at TM modes (see, e.g.,
[14]) we will consider below only the interaction of elec-
trons with the TE modes. As shown elsewhere [17], this
consideration can be adopted to the case of TM modes.

The electric and magnetic field of any resonator mode
oscillating in a stationary regime can be presented as

E=Re{ AE,e“'}, B=Re{ AB,e'“} ,

where o is the frequency of electromagnetic oscillations,
A is the field amplitude, and E; and B, describe spatial
structures of electric and magnetic fields, respectively.
These functions can be expressed via the Hertz potential
& ,, which is the solution of the Helmholtz equation
A® ,+(w/c)*® , =0 supplemented with the appropriate
boundary conditions. In the case of TE modes, E; and
B, are written

c A
Es=;[viq’,4 XZ] ,

CZ

B, =i{® ,2,+ —grad div(® ,Z,)} .
1)
Below we will assume that axial variations in the resona-
tor profile are weak enough that the potential function,
® ,, has the functional form ® ,=W¥(x,y,z)f(z). Here
Y(x,y,z) is the membrane function describing the trans-
verse structure of oscillations. It depends weakly on z
and satisfies the membrane equation A ,W+k?(z)¥=0
with the boundary condition that the normal derivative

of ¥ at the wall vanishes. The transverse wave number
k, depends on z only when the wall radius does. The
function f describes the axial structure of the resonator
field. If the effect of an electron beam on the axial struc-
ture of the resonator is negligibly small (the so-called
“cold-cavity” approximation, which is valid when the
reflections of the field from the input and output cross
sections of the resonator are large enough), this function
satisfies the equation

df _
dz?

2
(2]
?—kf(z)

f=0

known as the inhomogeneous string equation [44]. This
equation should be supplemented with the boundary con-
ditions that the evanescent field at the input cutoff cross
section vanish as z— o, and that the backward wave
vanish at the output cross section where the open resona-
tor is coupled to the output waveguide (see, e.g., [44]).

To study the resonant interaction between gyrating
electrons and the high-frequency electromagnetic field, it
is expedient to use the Fourier expansion of the mem-
brane function ¥ in terms of harmonics of angular coor-
dinate O (see, e.g., [8,14]) in the vicinity of an electron
guiding center with coordinates X, o Yg

V= ¥ (X,,Y,,r e %, @7
s

where Xg, Yg, rp, and 0 are related to the transverse
coordinates x and y by

x=X,+r;cosb, y=Y,+rpsin6 .

The quantity r; is to be interpreted as the electron Lar-
mor radius, r; =v,; /.. Using the integral representa-
tion of Bessel functions (Graff’s theorem) the coefficients
¥ in Eq. (27) can be written [45]

Y, =J,(k,r )L{(X,,Y,), (28)

where the Bessel function J,(k 7, ) gives the amplitude of
the sth-order multipole at distance r; from the center of
its angular rotation. Usually the argument k,r; is small
enough (k,r; <s) that the Bessel function can be approx-
imated by the sth-order polynomial. The operator

s Is|

1
ky

d ,.s O

S
e -5
X, sl ay,

|s|

L. =

s

V(X,,Y,) (29)

describes the transverse structure of the corresponding
harmonic of the membrane function at the point with
coordinates X,,Y,. For cylindrical resonators a mem-
brane function of the TE, , mode is Jo(k r)e MY,
Correspondingly, the operator L; is equal to L
=Jmxs(kyr, e S)¢g, where 7, and 1, are related to
X, and Y, as X, =r, cosy,, Y, =r, siny,, and the signs
— and + correspond, respectively, to the rotation of the
gyrating electrons in the same and opposite directions as
the operating mode.

For the representation of the resonator electromagnet-
ic field given above one can average the equations for
electron motion (8) and (9) over fast gyrations and arrive
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at the reduced set of average equations given in [46]

dy _Pi Re{Ffe'?} ,

= (30a)
%:%Re ,.F%ew] , (30b)
do ¥ ~SYolleo/@
dé p;
=Wpi‘2 Re |Feie |if + P2 4L ] (30¢)
z v d§

Here s is the resonant cyclotron harmonic number, and
the slowly varying quantity ¢=wt—s0 is the particle
phase with respect to the phase of the resonator field.
As earlier, components of electron momentum are
normalized to myc and p, can be determined as
p1=(y*—1—p2)/2, The normalized amplitude of the
resonator field, F, is equal to
ed 1 (kjoc /@) ™2

e T Gy e 31)

Equation (30b) describes the dependence of the elec-
tron axial momentum on the axial inhomogeneity of the
field structure. Recall that the axial field structure in
resonators can usually be represented as the superposi-
tion of many plane, transversely inhomogeneous waves
propagating with different axial wave numbers (see, e.g.,
[45]). This makes the consideration of the interaction be-
tween electrons and resonator fields more complicated
than that in waveguides. Nevertheless, there is at least
one partial case when this interaction is essentially the
same: consider a sinusoidal axial structure with a large
number of field variations along the resonator length and
assume that the cyclotron resonator condition (1) is valid
for a forward wave component. Then the backward wave
component can be neglected and Egs. (30) for the case of
fundamental cyclotron resonance are reduced to Egs.
(11).

Equations (30a)-(30c) are valid for an arbitrary axial
structure of the resonator field and arbitrary cyclotron
harmonic. We have studied them for the simplest case of
a sinusoidal axial structure, f(§)=sin[m(§/&,,)], and
operation at the fundamental cyclotron resonance (s =1).
We considered a monoenergetic beam both with and
without spread in orbital velocities. This set of equations
was again supplemented with the expression for the elec-
tron efficiency (25) and with the general relation between
electron energy and momentum (13).

To study the effect of deceleration of electron bunches
in the resonator we also need to specify the phase distri-
bution of electrons at the entrance. We have considered
two schemes: a free running, single resonator oscillator
(gyromonotron) in which the electrons are distributed
homogeneously in phase, and a two-cavity gyroklystron
with the boundary conditions given by Eq. (26).

The set of equations (30a)-(30c), with corresponding
boundary conditions, was studied for the initial normal-
ized electron energy y,=2, pitch factor ay=1.5, and

1005

electron bunching parameter ¢ =0 and 1.8. Results are
presented in Fig. 3, where lines of equal efficiency opti-
mized with respect to the magnetic field parameter, 8,
are shown in the plane of normalized amplitude, F, and
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FIG. 3. Interaction efficiency of cyclotron maser schemes
with a y=2, ap=1.5 electron beam: (a) monotron with no ve-
locity spread, (b) klystron with no velocity spread and one-
cavity prebunching, ¢ =1.8, (c) klystron with one-cavity pre-
bunching, ¢ =1.8 and 6% orbital velocity spread (it is assumed
that in the last scheme the external magnetic field is profiled for
discrimination of velocity spread effects in a drift region).
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length, &,,,. Figures 3(a) and 3(b) correspond to an ideal
electron beam with no velocity spread. In Fig. 3(a) the
case of gyromonotron is shown, e.g., ¢ =0; Fig. 3(b) cor-
responds to a gyroklystron with g=1.8. Figure 3(c)
shows the efficiency of a gyroklystron with the same
bunching parameter (¢ =1.8) and a monenergetic beam
with a triangular distribution in orbital velocities, corre-
sponding to an rms spread of 6%. The results shown in
Fig. 3(c) are obtained under the assumption that, due to
the profiling of the external magnetic field, the transit an-
gle through the drift region, 04, given in Eq. (25) is equal
to zero, and therefore the spread in electron axial veloci-
ties does not cause a spread in input phases 6(0).

From Fig. 3 it follows, first, that electron prebunching
drastically increases the electron efficiency. Second,
when the effect of electron axial velocity spread on transit
angles through the drift space is compensated for by
proper profiling of the guiding magnetic field, the
efficiency degradation caused by velocity spread is rather
weak. Third, the optimal interaction length in all cases
shown in Fig. 3 is short in accordance with Eq. (6). Such
a short length leads to a strong axial inhomogeneity of
the electric field structure. According to Eq. (30b) this
inhomogeneity may cause significant changes in electron
axial momentum which increase the efficiency. For illus-
tration the axial dependence of electron axial momenta is
shown in Fig. 4 for gyroklystron with an ideal electron
beam (parameters are £,,=3, F=0.24, Q ,/0=0.8,
g=1, yo=2, ap=1). For this set of parameters the
efficiency is about 44% and, as is seen from Fig. 4, elec-
trons undergo significant changes in p,. However, at
such a short distance the electrons make less than one
turn in the external magnetic field. Therefore, to describe
such an interaction between electrons and the em field
adequately we have to use nonaveraged equations of elec-
tron motion and take into account the interaction of the
electrons with the electromagnetic field at several cyclo-
tron harmonics simultaneously. This has been done in
realistic designs (where space charge effects were also tak-

Axial Momentum

Axial Coordinate

FIG. 4. Axial dependences of electron axial momenta in the
output cavity of a gyroklystron with no velocity spread and
Y0=2, =1, g=1, &,,=3, F=0.24, u=0.8 (for this set of pa-
rameters the efficiency is about 44%).

en into account) [26—-29]. Below, we will discuss some of
the principal issues in this complicated matter.

IV. SIMULTANEOUS INTERACTION OF ELECTRONS
WITH RESONATOR FIELDS
AT SEVERAL CYCLOTRON HARMONICS

A general description of the simultaneous interaction
between electrons and electromagnetic fields at several
cyclotron harmonics is not simple. First, we cannot aver-
age the equations for electron motion over a cyclotron
period, so these equations contain a large number of pa-
rameters. Second, when the number of electron orbits in
the interaction space is small the transverse drift of elec-
tron guiding centers is of the same order as changes in
electron energy and momentum. Therefore this drift
must also be taken into account. However, we will not go
into all the details here but will illustrate this issue with a
few simple examples.

First of all, let us attempt to account for the simultane-
ous interaction at several harmonics by a method of suc-
cessive approximation. By this we mean that we will
keep in the equations for electron motion, besides the
field of an originally resonant cyclotron harmonic, s, also
the terms responsible for the interaction with neighboring
harmonics, s —1 and s +1. Then, for the simplest case of
operation near cutoff at s =2 one can get instead of Egs.
(30) the following set of equations (for other harmonics,
these equations have a similar form):

2
dy _PL Re{Ffe'“[be %

1 —i20 —i36
+e +b;p,e ,
dé— P20 P ]}

(32a)

do _ Qo Yoy ; i e, i

AR A Re iFfeta)tb le 16+e i20
dg O Py Pzo { [ o

+bype 39} . (32b)

Here, parameters b; and b, are responsible for the first
and third cyclotron harmonic interaction, respectively:

_ 2Q. | L,

! o |L,|’
b, =—2 _L_l

2 4000 LZ ’

where L is defined in Eq. (29). We do not present here
equations for p, and p,, since for operation near cutoff
p,~=const=p,, and, therefore, the changes in p, and y
are related as p (dp, /d&)=vy(dy /d§). Since the cyclo-
tron frequency of decelerated electrons is larger than its
imperturbed value, these electrons become shifted from
initial closeness to the second harmonic towards funda-
mental resonance. Correspondingly, accelerating elec-
trons decrease their cyclotron frequency, which makes
the third harmonic interaction for these particles more
pronounced (when wt — 36 varies slowly).

The resulting effect from interaction with other har-
monics obviously depends first on electron prebunching
and second on the initial mismatch of cyclotron reso-
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nance. For a single harmonic interaction this mismatch
is usually rather large. It means that one places pre-
bunched electrons near the top of the ‘“cat’s eye” shown
in Fig. 5 and then gains energy from sending them to its
bottom. In such a case for electrons starting in a
“wrong” phase (outside the separatrix, see Fig. 5), the
third harmonic may accelerate them and thus spoil the
interaction efficiency. Let us point out that in the refer-
ence frame related to the second harmonic interaction the
phase space corresponding to the fundamental harmonic
moves to the right while that corresponding to the third
harmonic moves to the left. So, an electron initially out-
side can be trapped by the slipping harmonic “cat’s eye”
J

"= E  Ref{((1+5,e"+F,e "Yoo' ForaRel

P 1+51e‘¢0+532_1¢0)]] »

only when the field amplitude is large enough to make
significant changes in its energy and phase.

Let us illustrate this discussion with consideration of
“klystron” model of interaction. In such a model, origi-
nally suggested for a qualitative analysis of gyrotron non-
linearities by Yulpatov, the interaction space consists of
two short gaps with the same microwave field in each,
separated by a drift region. For such a model, Egs. (32)
can be integrated analytically. When the field amplitude
is small enough and all nonlinearity is caused by ballistic
bunching in a drift region only, the corresponding expres-
sion for the electron efficiency optimized with respect to
the drift transit angle has the following form:

. (33)

Here the bunching parameter g has the same meaning as in Eq. (26). Double angular brackets mean averaging over
normalized entrance time @, and initial gyroangle 1, The parameters b 1,3 are defined as £b;; where
£=[sin(®,/2)/(®,/2)] is the standard klystron parameter describing transit effects in a short gap
[@,=(1—5Q,/®)L,/B,, is the transit angle in one gap of length L;]. After integration over @, Eq. (33) becomes

equal to
F

n= ((1+bye"+bse "), [q(1+be o +bse 7)) . (34)

Yo—1

At small b,,b; the expression in angular brackets denot-
ed as ¥ being expanded in b;,b; and averaged over ¥,
can be reduced to

F=J,(q)+bbs[q] (g)—(g*—1)],(q)]

So, when the bunching parameter g is optimal for single-
harmonic interaction (g, ~1.84, see [42]) the presence
of other harmonics only deteriorates the efficiency. How-

Energy

1

0 b1 2%

Phase

FIG. 5. Hlustration of the possible interaction at the first and
third cyclotron harmonics in relativistic cyclotron masers
designed for operation at the second harmonic (fundamental
resonance may take place here only when the operating voltage
is high enough.)

[

ever, at small g [when ¢J,(g)<Jy(q)], these harmonics
may improve the efficiency. More accurate numerical
analysis of gyrodevices with simultaneous interaction of
electrons with microwave fields at several harmonics was
described in [27].

Let us also mention another specific case related to
simultaneous interaction of electrons with a resonator
field at two cyclotron harmonics (our attention was called
to this case by S. Tantawi). Suppose for simplicity that
the resonator field has a sinusoidal axial structure
f(x)=sin(I7z /L) and, therefore, can be represented as
the superposition of two opposite waves with the axial
wave number k,==xI/7/L. One can easily find that both
of these waves may be in cyclotron resonance with elec-
trons. For instance, the forward wave may be in reso-
nance at the sth harmonic while the opposite one at the
(s +1)th harmonic. This operation corresponds to the
Doppler frequency upshift, w /Q,=(2s+1)/2, or, in oth-
er words, to the axial index

_ 2 L/A
25+1 B

(36)

As one can see, for relativistic electron axial velocities
and a short resonator length, this index may be equal to 1
or 2. Thus such a double resonance can easily be realized
in standard gyrotron cavities with the normalized length
L /A=1(2s+1)B,,/2. Apparently, when the axial elec-
tron velocity is small, this resonance may occur in long
cavities only if the operating mode has a large number of
axial variations.

Now let us describe in a few words another limiting
case: the “relay” interaction of initially ultrarelativistic
electrons with a succession of cyclotron harmonics in the
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process of synchrotron radiation. The nonlinear (or,
more exactly, quasilinear) theory of such a synchrotron
maser was developed in Ref. [47], in which the authors
consider a beam with a large spread in electron energy.
Due to this spread in energy, at a given instant of time
different electron fractions have different cyclotron fre-
quencies, and hence interact with the electromagnetic
wave at different cyclotron harmonics. The synchrotron
maser studied in [47] was described by a pair of equations
for the field intensity and the electron distribution func-
tion. It was found that depending on the derivative of
the diffusion coefficient with respect to electron energy,
the electron beam may lose or gain energy in the process
of interaction with the wave. The gain is possible only in
systems far from exact autoresonance when this deriva-
tive is negative. These results demonstrate a common na-
ture of the studied synchrotron instability with the cyclo-
tron maser instability [1,5,32] which occurs due to the
negative derivative of the electron-cyclotron frequency
with respect to its energy. The efficiency of such a syn-
chrotron maser with large initial electron energy spread
and successive relay interaction is about 6% or less [47].

To further illustrate the effect of interaction with more
than one harmonic, we performed simulations using Eq.
(32) above. For definiteness, we took the dominant har-
monic to be s=2 and included competition from the
third harmonic only; i.e., set b; =0 in Eq. (32). This is
valid in realistic scenarios in which the particles are
placed initially near the top of the second harmonic
separatrix to ensure that they lose energy, and thus far
from the first harmonic resonance. Our strategy was to
first set the third harmonic coupling, b;, to zero and
compute the efficiency versus cavity length. At each
length, the efficiency was optimized with respect to the
amplitude and phase of F, the bunching parameter, g,
and the frequency mismatch, 1—2Q /. (The factor of
2 indicates that the second harmonic is dominant.) It was
taken as an rms axial velocity spread of 7%. We then re-
peated the optimization procedure with finite third har-
monic interaction; i.e., b, ranging from 0.1 to 0.6 in steps
of 0.1. Figure 6(a) indicates that as b; increases the peak
efficiency decreases, with the peak efficiency moving to
larger lengths. Figures 6(b) and 6(c) show also that as the
length increases both the amplitude and the frequency
mismatch decrease. This is consistent with our picture of
overlapping of resonances: as the third harmonic interac-
tion becomes more important, the amplitude decreases to
reduce the degree of resonance overlap, and the frequen-
cy mismatch decreases so that the particles are initially
lower in the separatrix.

V. CYCLOTRON MASERS
WITH VARIABLE MAGNETIC FIELDS

As mentioned above, the cyclotron resonance between
the wave and gyrating relativistic electrons can be main-
tained in the process of interaction if the electromagnetic
wave propagates along B, with phase velocity close to the
speed of light. As shown in Refs. [19,20,30], the interac-
tion of ideal (no velocity spread) electron beams with
such waves in CARMSs can be rather efficient. However,
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FIG. 6. Effect of the third harmonic interaction on the
operation of a second harmonic cyclotron maser with a 425 kV,
ap=1 electron beam; the resonator length is related to the
wavelength.

as follows from Eq. (7), in this kind of interaction the axi-
al velocity spread inherent in typical electron beams used
in cyclotron masers leads to significant inhomogeneous
Doppler broadening of the cyclotron resonance band and,
therefore, degrades efficiency. This sensitivity was
confirmed in a number of theoretical studies [48—50] and
it may be considered the main reason for low efficiencies
observed in CARM experiments [21,22]. (Note that the
highest efficiency, 10%, was realized in a CARM with a
nontraditional electron optics providing better beam
quality [21].) Also important is an increase in the group
velocity of the wave, vg,=c2/vph, that reduces coupling
of the wave to electrons. To provide optimal electron
bunching in this case one has either to increase the beam
current, which may enhance the role of space charge
effects in deteriorating efficiency, or to increase the in-
teraction length, which makes the interaction more sensi-
tive to electron velocity spread.

We may conclude, then, that it is reasonable to operate
at waves with smaller axial wave numbers than required
for CARM operation (in order to reduce the sensitivity of
efficiency to electron axial velocity spread) but with a ta-
pered magnetic field to maintain cyclotron resonance. As
follows from Eq. (7), to maintain resonance with de-
celerating particles the magnetic field must be down-
tapered. Such tapering works as a kind of phase selection
since electrons entering the interaction space in a de-
celerating phase can be trapped by the wave and interact
with it for a long time, while those entering in an ac-
celerating phase will soon be out of resonance due to rap-
id changes in cyclotron frequency. Of course, the num-
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ber of trapped particles can be increased by electron pre-
bunching which leads us to the relativistic gyrotwistron
[46,51]. This device combines bunching cavities separat-
ed by drift regions used in gyroklystrons with the output
waveguide of the gyro-traveling-wave-tube. The merits
of this device will be discussed later. Now we will discuss
the basic features of interaction between electromagnetic
waves and relativistic electrons gyrating in a tapered
magnetic field.

For the simple model considered above with a constant
magnetic field (Sec. II) the equations for electron motion
in the case of a tapered magnetic field can be written as
(cf. Ref. [24)])

4 —np, .

;l —_rYTre Im( Ae _w)_*_____gpl‘}’ ) (37a)
£ p: p;

o—k,v,—Q —n, :

%?;:-1_ : e YT Re(de’®) |, (37b)
g )2 (24 Pl

d ) 2

dpg :_n% Im(Ae')—gy 2L, (37¢)

%}gf_:_%lm(,,ew) , (37d)

In comparison with Egs. (11a)-(11d) given above for a
constant magnetic field model, Egs. (37a)-(37d) contain
some new terms proportional to the parameter of taper-
ing
1 4B,

2B, d§&

g

In principle, one should supplement these equations with
the equations describing transverse drift of electron guid-
ing centers in a waveguide field. Such equations were de-
rived in [24]. However, for simplicity, we will ignore this
effect here.

Now, as follows from Egs. (37¢) and (37d), instead of
the integral of motion given by Eq. (12) the following re-
lation between electron energy and axial momentum is
valid:

pdy 9 pi
d¢  d§ "p.B,
Also the electron energy and transverse momentum are
related by [24]

(38)

dp? dy? | 28pi
P )

In Egs. (38) and (39), the last terms describe magnetic
compression (decompression) of electrons in the up-
tapered (down-tapered) external magnetic field. Note
that in the case of the down-tapered magnetic field the
decompression of electrons means reduction of their or-
bital velocities and, correspondingly, enhancement of
their axial velocities. On the one hand, it may help to
avoid the appearance of reflected particles in regimes of
deep deceleration, but on the other hand, it reduces the
energy of the electron gyration available for transforma-
tion into microwave energy. To compensate for this

(39)

reduction one can slow down the phase velocity of the
wave, which is the opposite of our initial tendency to
operate at waves with large phase velocities (small k, ).
Let us discuss this issue in more detail.

Let us distinguish an electron, which we will suppose
to move with constant phase with respect to the wave,
and let us call it the “synchronous” electron. As follows
from Eq. (37b), the synchronism between this electron
and a wave with small amplitude [when the last term in
Eq. (37b) can be ignored] means

Q.=w—k,v, .

Introducing u’' as the ratio of nonrelativistic electron-
cyclotron frequency to the wave frequency, one can
rewrite this equation as

W=y, —np,, (40)

(here, s means “‘synchronous”). Equation (40) shows us
how to profile the external magnetic field in order to
maintain synchronism with the synchronous electron.
Note that Eq. (40) is also valid for the case when the
wave phase velocity (refractive index n) is variable. Us-
ing Eq. (40) to define the value of g according to changes
in the energy and axial momentum of the synchronous
electron, one can readily get for the synchronous electron
the following integral of motion [24]:

pte YoBho
_— —const——2'yo— .
Vs npz,s 1 —nOBzO

This equation can also be interpreted as the dependence
of the orbital momentum of the synchronous electron on
its energy and axial velocity:

P2 =_7_/§_____1_nBZ»Sp
s Yo 1—noB;o

2y, — (41)

fo—2(1=nB, v (vo—7,) , (42)

which is similar to Eq. (14) derived for a constant mag-
netic field and wave phase velocity. Equation (41) leads
to an expression for the single-particle efficiency of the
synchronous electron that is the same as the one given in
Eq. (18) for a constant magnetic field,

Yo~ Vs _ Blo
Ns,sp— =

Yo—l  2(1—ygH(1—neB,)

Here, v is the final energy of an electron losing its orbit-
al momentum. Note that our system of averaged equa-
tions has a Hamiltonian from which the integral of
motion follows [52]:

(43)

o

P?=const
sQ° ! ’

y—
where P, is the canonical momentum normalized to mgc.
Therefore, supposing that the maximum extraction of
electron energy corresponds to zero orbital momentum at
the final stage, one can find for the single-particle
efficiency the equation

2
Bio ®

N 2(1—')/0_1) Qc

TMsp

’
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which near cyclotron resonance coincides with Eq. (43).

The difference between Egs. (42) and (14), which corre-
sponds to the necessity of slowing down the optimal
phase velocity of the waves discussed above, leads to the
conclusion that in the case of the tapered external mag-
netic field the optimal wave is always the slow one (at
least, at the entrance to the interaction region). Indeed,
as follows from Eq. (43), the single-particle efficiency of
the synchronous electron is equal to unity when the ini-
tial refractive index is equal to [24]

(1_7/6‘1_- 20)2
2B,(1=y5 ")

Equation (44) shows that, in general, it is optimal to
operate at slow waves (nopt >1) under the condition of
the normal Doppler effect (ndP'B,,<1). (There is also
one partial case of B,,=1—y; ! when n$P'*=1, and the
optimal interaction is with a wave traveling at the speed
of light; see [10,11].) In the case of total particle de-
celeration (y s =1), the axial momentum is a linear func-
tion of electron energy

noPt=1+ (44)

pt+‘/

similar to cyclotron masers with constant magnetic field
and phase velocity, for which the integral given by Eq.
(12) is valid.

Of course, for practical purposes we should take into
account such factors as the previously discussed electron
axial velocity spread and the desire to avoid the appear-
ance of reflected particles. Then, we readily come to the
conclusion that the phase velocity must be larger than
the optimal one. [A corresponding dependence of the
shift in phase velocities on the axial velocity spread can
be estimated from Egs. (1) and (7).] Therefore practical
configurations of cyclotron masers can be designed for
efficient operation not only at slow waves (see, e.g., [56])
but also at widely used fast waves.

Note that even when electron velocity spread produced
by electron guns is negligibly small, there will be a certain
spread in energies of electrons starting interaction with
the wave at different gyrophases. When this spread in en-
ergies is small enough the electron phases obey the non-
linear pendulumlike equation [23,24]

dop
gMg

Here ¢, is the phase of the synchronous electron; the
coefficient M, called the effective mass of the oscillator,
depends on energy and axial momentum of electrons as
well as on the refractive index »; the coefficient K, known
as the coefficient of elasticity, is proportional to the am-
plitude of the electromagnetic Lorentz force acting on
electrons and also depends on momentum components of
the synchronous electron [23,24]. Equation (46) is known
in the theory of cyclic accelerators as the equation for
synchrotron oscillations. Bounce oscillations of electrons
described by Eq. (46) can be interpreted as oscillations of
charged particles in the potential well whose shape de-
pends on the phase of synchronous electron ¢,. The op-
timal choice of ¢, in turn depends on parameters of elec-

Prs(nP)=(y,—1)[n ngPt )2 —1] (45)

=K (sing —singy) . (46)
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tron prebunching [24] as well as on restrictions on the in-
teraction length caused by self-excitation of parasitic
waves in long waveguides.

Note that Egs. (41)-(45) discussed above do not de-
scribe all the details of electron-wave interaction. To
define the tapering of the magnetic field given by Eq. (40)
we must know the changes in the electron energy and axi-
al momentum which, in turn, depend on the magnetic
field tapering (so, this is a self-consistent problem), on the
wave amplitude, and other parameters of the interaction
region.

To find the axial dependence of the wave amplitude we
should consider the equation for wave excitation with the
source term averaged over particle distribution in all ini-
tial parameters (initial gyrophases and others). Such an
equation for relativistic cyclotron masers with traveling
waves has been derived elsewhere [53,54]. In the vari-
ables used in Eq. (37) this equation has the form

4 _;@ P 1 Py
d é‘ a)2 0 P
where o, is the electron plasma frequency. In principle,
not only the absolute value of 4 but also its phase vary
along £. However, since phases appear only in the com-
bination denoted ¢, the change in the wave phase can be
accounted for in Eq. (11b) by adding the corresponding
term, which can be found from the imaginary part of Eq.
(47) (see [24,55]). Note that the departure from operation
near cutoff, as follows from Eq. (47), reduces the coupling
of electrons to the wave. Thus, in real experiments the
value of n (or axial wave number) must be chosen taking
into account the available beam current and the restric-
tion on the interaction length discussed above.

The interaction of a prebunched electron beam with a
traveling wave in a tapered external magnetic field has
been realized in gyrotwistron experiments performed at
the University of Maryland [51]. In these experiments, a
strongly tapered magnetic field was used to maximize en-
ergy extraction. The experiment employed a 430 kV,
160-220 A beam with a pitch ratio near 1. Shown in
Fig. 7 is the design magnetic field and the optimal experi-
mental one, along with the placement of the input cavity
and waveguide. In the experiment there were four in-
dependently adjustable sets of magnetic field coils: one in
the gun region (which controlled the velocity ratio) and
three in the circuit region. The efficiency was optimized

e de,, 47

Input Beginning of
Cavity Output waveguide

l

FIG. 7. Optimal magnetic field profiles found in the design
(solid line) and experimentally (dashed line).

Magnetic Field (kG)
O = NDNW HhHuo N

[
(4]
(3]

15 25 35 45
Axial Distance (cm)



52 THEORY OF RELATIVISTIC CYCLOTRON MASERS 1011

as follows: the three sets of circuit coils were fixed and
the gun coil magnetic field was slowly decreased (thus in-
creasing the velocity ratio). Initially as the velocity ratio
increased so did the efficiency, but eventually parasitic os-
cillations were induced which drastically reduced output
power. At this point new values where chosen for the
circuit coils and the above procedure was repeated. The
peak efficiency, which occurred at the magnetic field
profile shown in Fig. 7 and a current of 220 A, was 22%,
corresponding to an output power of about 22 MW. The
agreement between the theoretical and experimental op-
timal axial distributions of the magnetic field looks quite
satisfactory. Note that in this experiment an uptapered
output waveguide section was used in which the ratio
k,c /w=n was varied from about 0.3 at the entrance to
about 0.5 at the exit.

VI. SUMMARY

Using simple models we considered some basic phe-
nomena in the interaction of relativistic gyrating elec-
trons with electromagnetic waves. Using the formalism
developed earlier for electron autoresonance acceleration
we studied deceleration of gyrating relativistic electrons
by electromagnetic waves. The optimum cyclotron reso-
nance mismatch was found. The spread in initial gyro-
phases causing significant degradation in the efficiency of
electron deceleration was estimated.

It was shown that the interaction of relativistic elec-
trons with a resonator field is most efficient when the
resonator length is short and the field amplitude is high.

In such a situation, the resonator electric field may have
rather strong axial inhomogeneity. This inhomogeneity
causes the appearance of the transverse magnetic field of
the resonator, which leads to axial deceleration of elec-
trons. This effect may enhance the efficiency. However,
for too short interaction length, simultaneous interaction
of electrons with the field at several cyclotron harmonics
can be important. As was shown for second harmonic
gyroklystrons, this overlapping of resonance can lead to
efficiency degradation. Note also that the field amplitude
can be restricted either by Ohmic losses in resonator
walls (in a long pulse or continuous wave operation) or by
microwave breakdown in a short pulse operation.

Therefore, an alternative concept of high-power rela-
tivistic gyroamplifiers may be of interest, namely
gyrotwistrons. For these devices with a traveling-wave
output section, we have considered some basic features of
interaction between traveling waves and relativistic elec-
trons gyrating in a strongly tapered external magnetic
field. We supplemented this consideration with the ex-
ample showing very good agreement between optimal
magnetic field tapering found in simulations and experi-
mentally for the case of operation rather far from cutoff.

A further increase in the interaction efficiency of rela-
tivistic gyroamplifiers can be provided, first, by produc-
ing electron beams with low velocity spread and second,
by utilizing high current electron beams in gyrotwistrons.
The effect of increasing the current is to shorten the op-
timal interaction length which makes operation of the de-
vice less sensitive to velocity spread. However, to pro-
duce high current electron beams of a good quality is a
major challenge for developers of electron guns.
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